This paper presents the findings on the behaviour of organic soft soil (clay and peat) using a variety of state-of-the-art laboratory tests. Moreover it addresses the importance of critical evaluation of the each test and the parameter determination. The tests are performed within a research program on behalf of research foundation “STOWA” to verify the stability of a local flood defence of the waterboard “Hoogheemraadschap van Delfland”. Oedometric tests (OED) and constant rate of strain tests (CRS) have been carried out to determine the preconsolidation stress, after which anisotropically K0-consolidated undrained triaxial tests (TA-ACU) and direct simple shear tests (DSS) have been executed with three different consolidation paths. All tests have been performed on undisturbed samples to obtain reliable soil parameters.
The interpretation of laboratory tests is made in terms of pre-consolidation stress (s’vy), undrained shear strength (Su) and effective friction angle (φ’). This paper focuses on determination of the strength parameters at large strains, the so called critical state or ultimate state parameters, further on called ultimate state parameters (“ult”). The ultimate parameters can be used for a effective stress approach with Mohr-Coulomb strength model using effective friction angle and no cohesion. The ultimate parameters can also be used for a critical state soil mechanics (CSSM) approach with undrained shear strength related to the effective stress and overconsolidationratio (OCR).
The undrained shear strength (Su) is normalised by the vertical consolidation stress (s’vc) to derive the undrained shear strength ratio (S). By plotting S versus the OCR, both the normally consolidated value (S;nc) as the exponent (m) to describe the overconsolidated behaviour are derived. The OCR is defined as s’vy
divided by s’vc. This paper presents additional criteria to define the ultimate state of Su.
To obtain the ultimate state effective friction angle (φ’), the interpretation of TA-ACU is made by plotting t against s’. For the DSS tests, Su is plotted against the ultimate vertical effective stress (σ’ult), which represents the vertical effective stress acting on the sample at the moment of failure. This paper presents additional criteria to define the ultimate state of φ’.
Lastly a comparison is made between two consolidation procedures to derive the undrained shear strength at in-situ stress conditions. Two identical samples have been tested, one sample is consolidated to the in-situ stress level before undrained shearing. The other samples is first consolidated to the pre-consolidation stress, then consolidated to the in-situ stress before undrained shearing, the so called SHANSEP method.