
Introduction
Landslides can pose serious threat to urban 
environment and to line infrastructures such as
roads and pipelines. Among multiple triggering
factors of landslides, precipitation is one of 
the most common ones, causing thousands of
landslides in the past decade, some of which are
amongst the deadliest landslides. For instance, the
debris flow occurred in August 2017 in and around
Freetown in Sierra Leone caused 1141 fatalities 
(Figure 1). Therefore, forecasting rainfall-induced

landslides can be extremely helpful to minimize
mortalities due to landslides and plan mitigation
and rescue measures. 

Forecasting rainfall-induced landslides is typically
done based on rainfall thresholds (e.g. Guzzetti et
al., 2007; Rossi et al., 2017). Although rainfall
thresholds are widely used for predicting the 
occurrence of landslides, they suffer from certain
limitations; one of them is that they have been
mostly developed for region-specific prediction of

landslides (Segoni et al., 2018), hence the outcome
suffers from geographical biases. To overcome 
the limitations of the conventional landslide fore-
casting methods, next to the rainfall intensity, 
duration and frequency, one needs to consider 
controlling factors, which include, among others,
topography, lithology and geomorphology of 
slopes, soil type, ambient temperature, surface 
radiation, vegetation, soil moisture, land use and
land cover. This was the subject of our study, 
for which we have set up a Machine Learning (ML)
framework to better estimate the onset of rainfall-
induced landslides. Figure 2 shows the forecasting
framework that was adopted in this research 
project. We used the NASA Global Landslide 
Catalogue (Kirschbaum et al., 2010) to build 
the detailed database of landslides.

Datasets

GLOBAL LANDSLIDE INVENTORY
The global landslide inventory is derived from 
the global landslide catalogue (GLC), which was 
developed by NASA Goddard Space Flight Center.
The GLC is based on various online news media,
scholarly articles, and existing hazard databases.
As of April 2018, the GLC consisted of 11,055
landslides with 10,988 landslides occurred after
2007. The GLC contains a limited number of lands-
lides triggered by factors other than rainfall, such
as earthquake and human action. In this study, we
filtered these types of landslides out and focused
only on rainfall-induced landslides.

With regard to location accuracy, Kirschbaum et al.
(2010) reported large uncertainties when assigning
geographic coordinates to a landslide event. To
deal with this uncertainty, they assigned a radius
of confidence (which spans from tens of meters to
tens of kilometres) to the location, indicating the
estimated radius of a circle over which the land-
slide may have occurred. To reduce the uncertainty
in finding the triggering and controlling factors 
associated with landslides events only with nearly
exact locations and with short-term rainfall (to 
be explained later) greater than 20 mm are 
considered in this study [this is because the focus
of this study is on rainfall-induced landslides]. 
For training a ML algorithm, non-landslide cases
are also needed. We sampled non-landslides from
landslide events with radius of confidence greater

Figure 1 – Sierra Leone landslide in 2018.
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Figure 2 – Landslide forecasting framework of this study.
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than 25 km and short-term rainfall less than 60 mm.
Since every landslide in the GLC has a coordinate,
it can be suggested that a landslide event with 
radius of confidence greater than 25 km did not
happen on the reported coordinate. This was 
further verified by visual inspection. Applying
these filters, the final dataset consist of 235 land-
slides and 1696 non-landslide events. 

RAINFALL DATA
As reported by Sun et al. (2018), currently there 
are approximately 30 available global precipitation
datasets, including gauge-based, satellite-derived,
and reanalysis datasets. These authors suggest
that the reliability of precipitation datasets is
mainly limited by the number and spatial coverage
of surface stations, the accuracy of satellite 
algorithms, and the data assimilation models. For
the scope of the current study, the maximum daily
rainfall data from Tropical Rainfall Measurement
Mission of NASA (TRMM 3B42) has been used 
for estimating the accumulated intensity of rainfall
on the day of landslide event, the day before (short
term rainfall) and nine days before these two days
(long term rainfall) prior to the event. Figure 3
shows the frequency of the accumulated short
term and long term rainfalls.

DIGITAL ELEVATION MODEL
Digital elevation models (DEMs) are considered 
as one of the main datasets for analysing the 
controlling factors involved in the landslide hazard
assessments (van Westen et al. 2008). These 
three-dimensional representations of the terrain
are useful for extracting key topographical and
geomorphological parameters including elevation,
slope, and aspect of the ground surface. In this
study, the NASA Shuttle Radar Topography Mis-
sion (SRTM, 2000) was used to obtain topo-grap-
hical features of the terrains where landslide
occurred. SRTM is selected due to the high spatial
resolution (30 m) and its temporal coverage with 
an acquisition date before the occurrence of all 
the landslides recorded in the database. 4 shows
the mean slope and elevation relief (difference 
between the maximum and minimum elevation
within the landslide confidence area) for the 
filtered landslide data.

SOIL AND BEDROCK
The comprising material of slopes and the depth 
of the bedrock can highly affect the hydro-geo-
mechanical response of slopes to rainfall. There-
fore, estimating the soil composition of hillslopes
can potentially enhance the predictability of 
rainfall-induced landslides.

Soil composition was retrieved as raster data from
the SoilGrids datasets (Hengl et al. 2014) at 250 m
resolution with a global coverage. Among the 
information available of SoilGrid, the estimated
fraction of sand, clay and silt and depth to the 
bedrock are used in this study. The average sand,
silt and clay fraction of the seven standard depths

S A M E N V A T T I N G

Landslides are catastrophic geo-hazards that threaten urbanization. Growth in 
population besides construction of critical infrastructures such as roads and 
pipelines in landslide-prone areas elevates the risk associated with landslides. 
Therefore, a system that is able to predict landslides and issues warning in a timely
manner is very appealing. It is widely accepted that precipitation is one of 
the most influential factors for triggering landslides. In this article, we present 
the preliminary results of a practical research study that has been carried out in 
Deltares. To that end, we have set up a framework that combines geo-engineering,
remote sensing, hydrology with Machine Learning (ML) to predict the onset of

landslides under the effect of precipitation. In this data-driven approach, ML 
methods are used to predict landslides by exploiting multiple Earth observation 
datasets, including rainfall data (e.g. TRMM 3B42) and Digital Elevation Models
(e.g. SRTM), and the NASA Global Landslide Catalogue. A detailed inventory of
landslides at a global level is built out of which a supervised ML algorithm is 
trained with landslide/non-landslide events. The trained ML model is then fed 
by rainfall data, topography features such as slope and elevation relief, soil and 
bedrock data, and vegetation index of target regions to assess the stability of 
the studied area. 
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Figure 3 – Accumulated rainfall for the filtered landslide events based on TRMM3B42:
(a) Short term and (b) long term.
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S U M M A R Y

Figure 5 –
Soil fraction for the 
filtered landslides.

Figure 4 – DEM properties for the filtered landslide events based on SRTM: (a) Slope and (b) Elevation relief.



are calculated as features to be used later in the
prediction stage. Figure 5 shows the fraction of
these soil types for the filtered landslide events.

VEGETATION 
Vegetation is another controlling factor that can
highly influence the stability of natural slopes and
therefore play a vital role in predicting landslides.
Leaves control soil moisture through evapotrans-
piration and roots can mechanically reinforce 
soil particles and increase shear strength of soil
compound by increasing the matric suction. There-
fore, it is accepted that in general lack or shortage
of vegetation can increase the susceptibility of 
slopes to landslides. One way of quantifying 
vegetation density is through calculating the 
Normalized Difference Vegetation Index (NDVI).

NDVI quantifies vegetation by measuring the 
difference between near-infrared (NIR), which is
strongly reflected by vegetation, and red (visible)
light (R), which is strongly absorbed by vegetation.
NDVI is calculated per pixel as a function of the 
red and near infrared bands:

                                                                                           
MACHINE LEARNING
For the current work, we used the Logistic Regres-
sion (LR) algorithm as a supervised ML method for
classification of landslide and non-landslide events
(binary classification). The LR algorithm is trained
with training sub-sets, which include controlling
and triggering factors as predictors (X) and labeled
(landslide or non-landslide) output (Y). The perfor-

mance of LR models is measured on test sub-sets
to evaluate the accuracy of predicting outputs.
LR algorithm calculates the pro-bability that the
predicted output belongs to a particular category
or class (landslide and non-landslide in this study).
Mathematically, the relationship between the 
probability p of landslide and the triggering and
controlling factors (predictors or features) can 
be expressed using the sigmoid function:

(1)

where z = w0 + w1x1+ w2x2+ w3x3+ ... + wnxn
is a linear combination of predictors x1 to xn, w0
is the intercept or bias of the model, and wi (i =1,
2, ..., n) are the weights (fitting coeffects) of the
features. These weights are derived by optimizing
the cost function which measures the difference 
of predicted output and actual output. If the 
probability of occurrence is greater than 50%, 
the model classifies the output as 1 (landslide),
otherwise 0 (non-landslide).

As mentioned earlier 235 landslides and 1696 
non-landslide events are used to build the ML 
dataset. However, the dataset suffers from imba-
lanced landslide and non-landslide events which
can influence the performance of any ML algo-
rithm. To overcome this issue, the non-landslide
events are undersampled by random removal of
1000 non-landslides. The outcome is a dataset that
consists of 235 landslides and 696 non-landslides. 

Research outcomes
LR algorithm was used to distinguish landslides
and non-landslide cases. To train the LR model,
nine example sets (E0 to E8) with different combi-
nation of triggering and controlling factors (model
features) were built. Table 1 shows the combina-
tion of controlling and triggering features (x1 to
x6) used for training the LR model, where 1 shows
if the feature is used and 0 means otherwise.

The sample sets are split into training (70%) and
test (30%) sets which then are used for training and
assessing the LR model. The accuracy of the LR
model in form of Receiver Operating Characteristic
(ROC) curves and the associated Area Under 
Curve (AUC) is illustrated in 7. The ROC curve is a
measure for evaluating a diagnostic test, where
true positive rate (Sensitivity) is plotted against
false positive rate (100 - Specificity) for various 
decision thresholds (between 0 to 100%). Every
point on the ROC curve represents a sensitivity/
specificity pair that corresponds to a certain 
decision threshold. The area under the ROC curve
(AUC) quantifies how well a group of features can
be used to distinguish between two diagnostic
groups (landslide / non-landslide). In general, 
higher AUC values (maximum = 1) indicate a more
accurate classification. However, other metrics
such as number of true positives and negatives 
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Figure 6 – NDVI before
landslide occurrence for
the filtered landslides.

Figure 7 - Accuracy of 
logistic regression model 
in classifying landslides 
and non-landslides.
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Table 1 - Example sets used in training the LR algorithm

Example set/Features      E0         E1       E2      E3       E4      E5     E6       E7      E8
x1 Short-term rain             1            1          1         1          1         1        1          1         1
x2 Long-term rain               0            0          0         1          1         1        1          1         1
x3 Mean slope                      0            1          0         0          0         1        1          1         1
x4 Elevation relief              0            0          1         0          1         0        1          1         1
x5 NDVI                                    0            0          0         0          1         1        0          1         1
x6 Soil and bedrock           0            0          0         0          1         1        1          0         1
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and false positives and negatives should be also
checked for further verifications.
7 shows that, in general, the LR model can perform
well in distinguishing landslide and non-landslide
cases. By comparing the results of E1 (AUC = 0.66)
and E2 (AUC = 0.92), it can be suggested that 
having the short-term rainfall fixed, elevation relief
can be more effective than slope angle for land-
slide/non-landslide classification. This indicates
that elevation relief on regional scales can be more
representative of the topography of the region
than slope angle. This has been suggested by other
authors such as Lin et al. (2017). Looking into other
cases with high accuracy (AUC = 0.91), namely E6,
E8 and E10 it can be suggested that adding more
features to a training set of an ML model might not
necessarily result in better prediction. In this case,
E2 prediction is as good as E6, E7 and E8. However,
looking into number of true negatives (correctly
predicted non-landslides), it seems E8 slightly 
performs better than the rest of example sets. 

This observation emphasizes the role of feature 
engineering in ML problems. Feature engineering
can reduce the cost of prediction as less number of
features may result in highly accurate ML models.

Summary conclusions
In this paper, we presented the preliminary results
of a practical research study on developing a data-
driven framework for predicting rainfall-induced
landslides. LR as an MR algorithm was used to 
predict landslides by exploiting multiple Earth 
Observation datasets. Although the database 
and forecasting framework that were reported in
this study are at their initial stage, the results of
the study (AUC greater than 90%) showed that
such a framework, with enhanced datasets and
perhaps more advanced ML algorithms, can be
used for forecasting rainfall-induced landslides
and landslide early warning systems at a global 
and regional scales. 
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